Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
ssrn; 2023.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4654753

Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.12.544667

ABSTRACT

The COVID-19 pandemic both relied and placed significant burdens on the experts involved from research and public health sectors. The sustained high pressure of a pandemic on responders, such as healthcare workers, can lead to lasting psychological impacts including acute stress disorder, post-traumatic stress disorder, burnout, and moral injury, which can impact individual wellbeing and productivity. As members of the infectious disease modelling community, we convened a reflective workshop to understand the professional and personal impacts of response work on our community and to propose recommendations for future epidemic responses. The attendees represented a range of career stages, institutions, and disciplines. This piece was collectively produced by those present at the session based on our collective experiences. Key issues we identified at the workshop were lack of institutional support, insecure contracts, unequal credit and recognition, and mental health impacts. Our recommendations include rewarding impactful work, fostering academia-public health collaboration, decreasing dependence on key individuals by developing teams, increasing transparency in decision-making, and implementing sustainable work practices. Despite limitations in representation, this workshop provided valuable insights into the UK COVID-19 modelling experience and guidance for future public health crises. Recognising and addressing the issues highlighted here is crucial, in our view, for ensuring the effectiveness of epidemic response work in the future.


Subject(s)
Chemical and Drug Induced Liver Injury , Communicable Diseases , Tooth, Impacted , COVID-19 , Stress Disorders, Traumatic , Stress Disorders, Traumatic, Acute
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.22.22278973

ABSTRACT

In late 2020, the JCVI (the Joint Committee on Vaccination and Immunisation, which provides advice to the Department of Health and Social Care, England) made two important recommendations for the initial roll-out of the COVID-19 vaccine. The first was that vaccines should be targeted to the elderly and vulnerable, with the aim of maximally preventing disease rather than infection - a prioritisation that has become the adopted practice in many countries. The second was to increase the interval between first and second doses for 3 to 12-weeks, which both accounted for the observation that the ChAdOx vaccine appeared to have a higher efficacy with this longer dose interval, and that by delaying second doses the capacity to deliver first doses was increased. Here, using the latest data on vaccine efficacy we re-examine these recommendations through a mathe- matical model, to understand their short and medium-term impacts in England. In particular, we show that targeting the most vulnerable had the biggest immediate impact (compared to targeting younger individuals who may be more responsible for transmission). The 12-week delay was also highly beneficial, estimated to have averted between 32-72 thousand hospital admissions and 4-9 thousand deaths over the first ten months of the campaign (December 2020 - September 2021) - depending on the assumed interaction between dose interval and efficacy.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.04.22277231

ABSTRACT

The emergence of SARS-CoV-2 saw severe detriments to public health being inflicted by COVID-19 disease throughout 2020. In the lead up to Christmas 2020, the UK Government sought an easement of social restrictions that would permit spending time with others over the Christmas period, whilst limiting the risk of spreading SARS-CoV-2. In November 2020, plans were published to allow individuals to socialise within Christmas bubbles with friends and family. This policy involved a planned easing of restrictions in England between 23-27 December 2020, with Christmas bubbles allowing people from up to three households to meet throughout the holiday period. We estimated the epidemiological impact of both this and alternative bubble strategies that allowed extending contacts beyond the immediate household. We used a stochastic individual-based model for a synthetic population of 100,000 households, with demographic and SARS-CoV-2 epidemiological characteristics comparable to England as of November 2020. We evaluated five Christmas bubble scenarios for the period 23-27 December 2020, assuming our populations of households did not have symptomatic infection present and were not in isolation as the eased social restrictions began. Assessment comprised incidence and cumulative infection metrics. We tested the sensitivity of the results to a situation where it was possible for households to be in isolation at the beginning of the Christmas bubble period and also when there was lower adherence to testing, contact tracing and isolation interventions. We found that visiting family and friends over the holiday period for a shorter duration and in smaller groups was less risky than spending the entire five days together. The increases in infection from greater amounts of social mixing disproportionately impacted the eldest. We provide this account as an illustration of a real-time contribution of modelling insights to a scientific advisory group, the Scientific Pandemic Influenza Group on Modelling, Operational sub-group (SPI-M-O) for the Scientific Advisory Group for Emergencies (SAGE) in the UK, during the COVID-19 pandemic. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Subject(s)
COVID-19 , Emergencies
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.26.22269877

ABSTRACT

Background: The SARS-CoV-2 pandemic has generated considerable morbidity and mortality worldwide. While the protection offered by vaccines (and booster doses) offers a method of mitigating the worst effects, by the end of 2021 the distribution of vaccine was highly heterogeneous with some countries achieving over 90% coverage in adults by the end of 2021, while others have less than 2%. In part, this is due to the availability of sufficient vaccine, although vaccine hesitancy also plays a role. Methods: We use an age-structured model of SARS-CoV-2 dynamics, matched to national data from 152 countries, to investigate the global impact of different vaccine sharing protocols during 2021. We assume a direct relationship between the emergence of variants with increased transmissibility and the cumulative amount of global infection, such that lower global prevalence leads to a lower reproductive number within each country. We compare five vaccine sharing scenarios, from the current situation, through sharing once a particular within-country threshold is reached (e.g. all over 40s have received 2 doses), to full sharing where all countries achieve equal age-dependent vaccine deployment. Findings: Compared to the observed distribution of vaccine uptake, we estimate full vaccine sharing would have generated a 1.5% (PI -0.1 - 4.5%) reduction in infections and a 11.3% (PI 0.6 - 23.2%) reduction in mortality globally by January 2022. The greatest benefit of vaccine sharing would have been experienced by low and middle income countries, who see an average 5.2% (PI 2.5% - 10.4%) infection reduction and 26.8% (PI 24.1% - 31.3%) mortality reduction. Many high income countries, that have had high vaccine uptake (most notably Canada, Chile, UK and USA), suffer increased infections and mortality under most of the sharing protocols investigated, assuming no other counter measures had been taken. However, if reductions in vaccine supply in these countries had been offset by prolonged use of non-pharmaceutical intervention measures, we predict far greater reductions in global infection and mortality of 64.5% (PI 62.6% - 65.4%) and 62.8% (PI 44.0% - 76.3%), respectively. Interpretation: By itself, our results suggest that although more equitable vaccine distribution would have had limited impact on overall infection numbers, vaccine sharing would have substantially reduced global mortality by providing earlier protection of the most vulnerable. If increased vaccine sharing from high income nations had been combined with slower easing of non pharmaceutical interventions to compensate for this, a large reduction in both infection and mortality globally would be expected, confounded by a lower risk of new variants arising.


Subject(s)
COVID-19 , Infections
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.01.21268131

ABSTRACT

Quantitative assessments of the recent state of an epidemic and short-term projections into the near future are key public health tools that have substantial policy impacts, helping to determine if existing control measures are sufficient or need to be strengthened. Key to these quantitative assessments is the ability to rapidly and robustly measure the speed with which the epidemic is growing or decaying. Frequently, epidemiological trends are addressed in terms of the (time-varying) reproductive number R. Here, we take a more parsimonious approach and calculate the exponential growth rate, r, using a Bayesian hierarchical model to fit a Gaussian process to the epidemiological data. We show how the method can be employed when only case data from positive tests are available, and the improvement gained by including the total number of tests as a measure of heterogeneous testing effort. Although the methods are generic, we apply them to SARS-CoV-2 cases and testing in England, making use of the available high-resolution spatio-temporal data to determine long-term patterns of national growth, highlight regional growth and spatial heterogeneity.

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.08.21266079

ABSTRACT

The reduction in SARS-CoV-2 transmission from contact tracing applications (apps) depends both on the number of contacts notified and on the probability that those contacts quarantine after notification.Referring to the number of days preceding a positive test that contacts are notified as an app's notification window, we use an epidemiological model of SARS-CoV-2 transmission that captures the profile of infection to consider the trade-off between notification window length and active app-usage. We focus on 5-day and 2-day windows, the lengths used by the NHS COVID-19 app in England and Wales before and after 2nd August 2021, respectively. Short windows can be more effective at reducing transmission if they are associated with higher levels of active app usage and adherence to isolation upon notification, demonstrating the importance of understanding adherence to control measures when setting notification windows for COVID-19 apps.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.07.21258476

ABSTRACT

Ongoing infection with, and associated viral reproduction of, SARS-CoV-2 provides opportunities for the virus to acquire advantageous mutations, which may alter viral transmissibility and disease severity, and allow escape from natural or vaccine-derived immunity. The number of countries reporting Variants of Concern (VOCs) with such mutations continues to rise. Here, we investigate two scenarios for third waves of the COVID pandemic: one driven by increased transmissibility, and another driven by immune escape. We do this using three mathematical models: a parsimonious susceptible-latent-infectious-recovered (SEIR) deterministic model with homogeneous mixing, an age-structured SARS-CoV-2 transmission model and a stochastic importation model. We calibrated our models to the situation in England in May 2021, although the insights will generalise to other contexts. We therefore accurately captured infection dynamics and vaccination rates, and also used these to explore the potential impact of a putative new VOC-targeted vaccine. Epidemiological trajectories for putative VOCs are wide-ranging and heavily dependent on their transmissibility, immune escape capability, and the time at which a postulated VOC-targeted vaccine may be introduced. We demonstrate that a VOC with either a substantial transmission advantage over resident variants, or the ability to evade vaccine-derived and prior immunity, is expected to generate a wave of infections and hospitalisations comparable to those seen in the winter 2020-21 wave. Moreover, a variant that is less transmissible, but shows partial immune-escape could provoke a wave of infection that would not be revealed until control measures are further relaxed.


Subject(s)
COVID-19 , Infections
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.22.21255949

ABSTRACT

Background Even with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, could be optimised to maximise economic benefits while achieving substantial reductions in disease. Methods Here we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay for health improvement. Results We find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the willingness to pay (WTP) per QALY loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value. Conclusions It is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.14.21253544

ABSTRACT

As a counter measure to the SARS-CoV-2 pandemic there has been swift development and clinical trial assessment of candidate vaccines, with subsequent deployment as part of mass vaccination campaigns. However, the SARS-CoV-2 virus has demonstrated the ability to mutate and develop variants, which can modify epidemiological properties and potentially also the effectiveness of vaccines. The widespread deployment of highly effective vaccines may rapidly exert selection pressure on the SARS-CoV-2 virus directed towards mutations that escape the vaccine induced immune response. This is particularly concerning whilst infection is widespread. By developing and analysing a mathematical model of two population groupings with differing vulnerability and contact rates, we explore the impact of the deployment of vaccine amongst the population on R, cases, disease abundance and vaccine escape pressure. The results from this model illustrate two insights (i) vaccination aimed at reducing prevalence could be more effective at reducing disease than directly vaccinating the vulnerable; (ii) the highest risk for vaccine escape can occur at intermediate levels of vaccination. This work demonstrates a key principle that the careful targeting of vaccines towards particular population groups could reduce disease as much as possible whilst limiting the risk of vaccine escape.

11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.10.21251484

ABSTRACT

The introduction of SARS-CoV-2, the virus that causes COVID-19 infection, in the UK in early 2020, resulted in the UK government introducing several control policies in order to reduce the spread of disease. As part of these restrictions, schools were closed to all pupils in March (except for vulnerable and key worker children), before re-opening to certain year groups in June. Finally all school children returned to the classroom in September. In this paper, we analyse the data on school absences from September 2020 to December 2020 as a result of COVID-19 infection and how that varied through time as other measures in the community were introduced. We utilise data from the Educational Settings database compiled by the Department for Education and examine how pupil and teacher absences change in both primary and secondary schools. Our results show that absences as a result of COVID-19 infection rose steadily following the re-opening of schools in September. Cases in teachers were seen to decline during the November lockdown, particularly in those regions that had previously been in tier 3, the highest level of control at the time. Cases in secondary school pupils increased for the first two weeks of the November lockdown, before decreasing. Since the introduction of the tier system, the number of absences owing to confirmed infection in primary schools was observed to be significantly lower than in secondary schools across all regions and tiers. In December, we observed a large rise in the number of absences per school in secondary school settings in the South East and Greater London, but such rises were not observed in other regions or in primary school settings. We conjecture that the increased transmissibility of the new variant in these regions may have contributed to this rise in cases in secondary schools. Finally, we observe a positive correlation between cases in the community and cases in schools in most regions, with weak evidence suggesting that cases in schools lag behind cases in the surrounding community. We conclude that there is not significant evidence to suggest that schools are playing a significant role in driving spread in the community and that careful monitoring may be required as schools re-open to determine the effect associated with open schools upon community incidence.


Subject(s)
COVID-19
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.18.20230649

ABSTRACT

BackgroundAs part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. MethodsWe use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider the risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home; using temporally asynchronous work patterns; and introducing measures to create COVID-secure workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. ResultsThe progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and engaging with contact tracing without other measures is an effective tool to curb transmission, but is highly sensitive to adherence levels. ConclusionsIn the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.

14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.11.20220962

ABSTRACT

Background: Short-term forecasts of infectious disease can create situational awareness and inform planning for outbreak response. Here, we report on multi-model forecasts of Covid-19 in the UK that were generated at regular intervals starting at the end of March 2020, in order to monitor expected healthcare utilisation and population impacts in real time. Methods: We evaluated the performance of individual model forecasts generated between 24 March and 14 July 2020, using a variety of metrics including the weighted interval score as well as metrics that assess the calibration, sharpness, bias and absolute error of forecasts separately. We further combined the predictions from individual models to ensemble forecasts using a simple mean as well as a quantile regression average that aimed to maximise performance. We further compared model performance to a null model of no change. Results: In most cases, individual models performed better than the null model, and ensembles models were well calibrated and performed comparatively to the best individual models. The quantile regression average did not noticeably outperform the mean ensemble. Conclusions: Ensembles of multi-model forecasts can inform the policy response to the Covid-19 pandemic by assessing future resource needs and expected population impact of morbidity and mortality.


Subject(s)
COVID-19 , Communicable Diseases
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.15.20208454

ABSTRACT

Background: The higher education system in the United Kingdom comprises a large student population. Around 40% of school leavers attend university and individual universities generally host thousands of students each academic year. In the setting of the COVID-19 pandemic, bringing together these student communities presents questions regarding the strength of interventions required to control transmission. Prior modelling analysis of SARS-CoV-2 transmission within universities has usually adopted a compartmental modelling approach, whose projections suggest an almost inevitable likelihood of outbreaks. Methods: We constructed a network-based model to capture the interactions of a student population in different settings (housing, social and study). For a representative campus-based university, we ran a susceptible-latent-infectious-recovered type epidemic process, parameterised according to available estimates for SARS-CoV-2. Over the course of a single academic term, we investigated the impact on infection control of adherence to (or effectiveness of) isolation, test and trace measures, the additional use of room isolation as an intervention and supplementary mass testing. Results: Incorporating uncertainty in the fraction of cases that are asymptomatic and their associated infectivity, in the absence of interventions our model estimated that 16% (2% - 38%) of the student population could be infected during the autumn term. In contrast, with full adherence to isolation measures and engagement with test-and-trace, predictions of the cumulative infection count were lower, 1.4% (0.4% - 5%). Irrespective of the adherence to isolation measures, on average a higher proportion of students resident on-campus became infected compared with students resident off-campus. Widespread adherence of interventions led to reductions in the average fraction of time those individuals adhering to measures were expected to be isolated, with room isolation as an additional intervention generating minimal benefits. The model found that a one-off instance of mass testing would not drastically reduce the term-long case load or end-of-term prevalence, but regular weekly or fortnightly testing could reduce both measures by more than 50% (compared to having no mass testing). Conclusions: Our findings suggest SARS-CoV-2 may readily transmit amongst a student population within a university setting if there is limited adherence to nonpharmaceutical interventions and there are delays present in receiving test results. Following isolation guidance and effective contact tracing both curbed transmission and reduced the expected time an adhering student would spend in isolation. Additionally, widespread adherence throughout the term suppresses the amount of unwitting asymptomatic transmission to family and community members in the students' domicile regions at the end of term.


Subject(s)
COVID-19
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20211813

ABSTRACT

The COVID-19 pandemic in the UK has been characterised by periods of exponential growth and decline, as different non-pharmaceutical interventions (NPIs) are brought into play. During the early uncontrolled phase of the outbreak (early March 2020) there was a period of prolonged exponential growth with epidemiological observations such as hospitalisation doubling every 3-4 days (growth rate r{approx}0.2). The enforcement of strict lockdown measures led to a noticeable decline in all epidemic quantities (r{approx}-0.06) that slowed during the summer as control measures were relaxed (r{approx}-0.02). Since August, infections, hospitalisations and deaths have been rising (precise estimation of the cur-rent growth rate is difficult due to extreme regional heterogeneity and temporal lags between the different epidemiological observations) and various NPIs have been applied locally throughout the UK in response. Controlling any rise in infection is a compromise between public health and societal costs, with more stringent NPIs reducing cases but damaging the economy and restricting freedoms. Currently, NPI imposition is made in response to the epidemiological state, are of indefinite length and are often imposed at short notice, greatly increasing the negative impact. An alternative approach is to consider planned, limited duration periods of strict NPIs aiming to purposefully reduce prevalence before such emergency NPIs are required. These 'precautionary breaks' may offer a means of keeping control of the epidemic, while their fixed duration and the forewarning may limit their society impact. Here, using simple analysis and age-structured models matched to the unfolding UK epidemic, we investigate the action of precautionary breaks. In particular we consider their impact on the prevalence of infection, as well as the total number of predicted hospitalisations and deaths. We find that precautionary breaks provide the biggest gains when the growth rate is low, but offer a much needed brake on increasing infection when the growth rate is higher, potentially allowing other measures (such as contact tracing)to regain control.


Subject(s)
COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.22.20194183

ABSTRACT

The COVID-19 outbreak has highlighted our vulnerability to novel infections. Faced with this threat and no effective treatment, most countries adopted some form of enforced social distancing (lockdown) to reduce transmission - in most cases successfully reducing the reproductive number,R, below one. However, given the large pool of susceptible individuals that remain, complete relaxation of controls is likely to generate a substantial second wave. Vaccination remains the only foreseeable means of both containing the infection and returning to normal interactions and behaviour. Here, we consider the optimal targeting of vaccination with the aim of minimising future deaths or quality adjusted life year (QALY) losses. We show that, for a range of assumptions on the action and efficacy of the vaccine, targeting older age groups first is optimal and can avoid a second wave if the vaccine prevents transmission as well as disease.


Subject(s)
COVID-19 , Death
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.04.20163782

ABSTRACT

The COVID-19 pandemic has brought to the fore the need for policy makers to receive timely and ongoing scientific guidance in response to this recently emerged human infectious disease. Fitting mathematical models of infectious disease transmission to the available epidemiological data provides a key statistical tool for understanding the many quantities of interest that are not explicit in the underlying epidemiological data streams. Of these, the basic reproductive ratio, $R$, has taken on special significance in terms of the general understanding of whether the epidemic is under control ($R<1$). Unfortunately, none of the epidemiological data streams are designed for modelling, hence assimilating information from multiple (often changing) sources of data is a major challenge that is particularly stark in novel disease outbreaks. Here, we present in some detail the inference scheme employed for calibrating the Warwick COVID-19 model to the available public health data streams, which span hospitalisations, critical care occupancy, mortality and serological testing. We then perform computational simulations, making use of the acquired parameter posterior distributions, to assess how the accuracy of short-term predictions varied over the timecourse of the outbreak. To conclude, we compare how refinements to data streams and model structure impact estimates of epidemiological measures, including the estimated growth rate and daily incidence.


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.04.20121434

ABSTRACT

Background: In the UK, cases of COVID-19 have been declining since mid-April and there is good evidence to suggest that the effective reproduction number has dropped below 1, leading to a multi-phase relaxation plan for the country to emerge from lockdown. As part of this staggered process, primary schools are scheduled to partially reopen on 1st June. Evidence from a range of sources suggests that children are, in general, only mildly affected by the disease and have low mortality rates, though there is less certainty regarding children's role in transmission. Therefore, there is wide discussion on the impact of reopening schools. Methods: We compare eight strategies for reopening primary and secondary schools in England from 1st June, focusing on the return of particular year groups and the associated epidemic consequences. This is assessed through model simulation, modifying a previously developed dynamic transmission model for SARS-CoV-2. We quantify how the process of reopening schools affected contact patterns and anticipated secondary infections, the relative change in R according to the extent of school reopening, and determine the public health impact via estimated change in clinical cases and its sensitivity to decreases in adherence post strict lockdown. Findings: Whilst reopening schools, in any form, results in more mixing between children, an increase in R and hence transmission of the disease, the magnitude of that increase can be low dependent upon the age-groups that return to school and the behaviour of the remaining population. We predict that reopening schools in a way that allows half class sizes or that is focused on younger children is unlikely to push R above one, although there is noticeable variation between the regions of the country. Given that older children have a greater number of social contacts and hence a greater potential for transmission, our findings suggest reopening secondary schools results in larger increases in case burden than only reopening primary schools; reopening both generates the largest increase and could push R above one in some regions. The impact of less social-distancing in the rest of the population, generally has far larger effects than reopening schools and exacerbates the impacts of reopening. Discussion: Our work indicates that any reopening of schools will result in increased mixing and infection amongst children and the wider population, although the opening of schools alone is unlikely to push the value of R above one. However, impacts of other recent relaxations of lockdown measures are yet to be quantified, suggesting some regions may be closer to the critical threshold that would lead to a growth in cases. Given the uncertainties, in part due to limited data on COVID-19 in children, school reopening should be carefully monitored. Ultimately, the decision about reopening classrooms is a difficult trade-off between increased epidemiological consequences and the emotional, educational and developmental needs of children.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL